Free-Style Theorem Proving*

David Delahaye™*

Programming Logic Group
Chalmers University of Technology* * *

Abstract. We propose a new proof language based on well-known ex-
isting styles such as procedural and declarative styles but also using
terms as proofs, a specific feature of theorem provers based on the Curry-
Howard isomorphism. We show that these three styles are really appro-
priate for specific domains and how it can be worth combining them to
benefit from their advantages in every kind of proof. Thus, we present,
in the context of the Coq proof system, a language, called Lpq:, which is
intended to make a fusion between these three styles and which allows
the user to be much more free in the way of building his/her proofs.
We provide also a formal semantics of £,4:+ for the Calculus of Inductive
Constructions, as well as an implementation with a prototype for Coq,
which can already run some relevant examples.

1 Introduction

In theorem provers, we can generally distinguish between two kinds of languages:
a proof! language, which corresponds to basic or more elaborated primitives and
a tactic language, which allows the user to write his/her own proof schemes. In
this paper, we focus only on the first kind of language and we do not deal with
the power of automation of proof systems. Here, we are interested in expressing
proofs by considering different kinds of styles, finding the "good" criteria and
thinking about combining these criteria according to the proof.

Proof languages for theorem provers have been extensively studied and, cur-
rently, two styles have gained prominence: the procedural style and the declara-
tive style. John Harrison makes a complete comparison between these two styles
in [5], where the declarative style is rather enhanced but also moderated. Indeed,
the author shows how it is difficult to make a clear division between these two
styles and this can be seen in the Mizar mode [6] he developed for HOL. In the
same way, Markus Wenzel has implemented a generic declarative layer, called
Isar [11], on top of Isabelle. From a more declarative-dedicated viewpoint, there

* This work has been realized within the LogiCal project (INRIA-Rocquencourt,
France).
** delahaye@cs.chalmers.se, http://www.cs.chalmers.se/~delahaye/.
*** Chalmers University of Technology, Department of Computing Science, S-412 96
Gothenburg, Sweden.
! The word "proof' may be open to several interpretations. Here, we mostly use
"proof" in the sense of a script to be presented to a machine for checking.

are the work of Don Syme with his theorem prover Declare [8] and Vincent Za-
mmit’s thesis [12]. Closer to natural language, there is also the Natural package
of Yann Coscoy [2] in Coq, where it is possible to produce natural proofs from
proof terms and to write natural proof scripts directly. Along the same lines, in
Alfa [1] (successor of ALF), we can produce natural proofs in several languages.

A third kind of proof language, quite specific to the logic used by the proof
system, could be called "term language". This is a language which uses the cod-
ing of proofs into terms and propositions into types. This semantic (Brouwer-
Heyting-Kolmogorov) deals only with intuitionistic logics (without excluded mid-
dle) and significantly modifies the way proofs are checked. In such a context, the
logic is seen as a type system and checking if a proof (term) corresponds to
a proposition (type) is only typechecking (Curry-Howard’s isomorphism). The
first versions of Coq used that kind of language before having a procedural style
even if it is always possible to give terms as proofs. In Lego or Nuprl, we have
exactly the same situation. Currently, only Alfa uses a direct manipulation of
terms to build proofs.

The main idea in this paper is to establish what the contributions of these
three kinds of languages are, especially in which frameworks, and to make a
fusion which could be interesting in practice. Before presenting our proposition,
we consider a short example of a proof to allow the reader to have some idea
of these three proving styles. It also illustrates the various features of these
languages and shows the domains (in terms of the kinds of proofs) in which they
are suitable. Next, we give the syntax of the language we suggest in the context
of Coq [9], and which has been called L,q: ("pdt" are initials denoting the fusion
between the three worlds: "p" is for procedural, "d" is for declarative and "t"
is for term), as well as some ideas regarding the formal semantics that has been
designed. This last point is also a major originality of this work and as far as
the author is aware, ALF is the only system, which has a formally described
proof language [7]. However, this semantics deals only with proof terms and,
here, we go further trying to give also, in the same context, a formal semantics
to procedural parts, as well as to declarative features. From this semantics, a
prototype has been carried out and, finally, we consider some examples of use,
which show how L£,4; can be appropriate, but also what kind of improvements
can be expected.

2 Proof examples

The example we chose to test the three kinds of languages is to show the decid-
ability? of equality on the natural numbers. It can be expressed as follows:

Vn,m € Non =mV =(n =m)

% This proposition is called "decidability of equality" because we will give an intuition-
istic proof in every case. Thus, we can always realize the proof of this lemma toward
a program which, given two natural numbers, answers "yes" if the two numbers are
equal and "no" otherwise.

Informally, the previous proposition can be shown in the following way:

1. We make an induction on n.
The basis case gives us 0 = m V =(0 = m) to be shown:
(a) We reason by case on m.
First, we must show that 0 = 0V =(0 = 0), which is trivial because we know
that 0 = 0.
(b) Next, we must show that 0 = m + 1V =(0 = m + 1), which is trivial because
we know that —(0 = m + 1).
2. For the inductive case, we suppose that we have n = m V =(n = m) (H) and we
must show that n+1=mV ~(n+1=m):
(a) We reason by case on m.
First, we must show that n+1 =0V —~(n+ 1 = 0), which is trivial because we
know that ~(n+1 = 0).
(b) Next, we must show that n+1=m+1V ~(n+ 1 =m+ 1). Thus, we reason
by case with respect to the inductive hypothesis H:
i. Either n = m: we can conclude because we can deduce that n+1 = m+1.
ii. Or =(n = m): we can conclude in the same way because we can deduce
that =(n+1=m +1).

2.1 Procedural proof

As a procedural style, we decided to choose the Coq proof system [9]. A possible
proof script for the previous proposition is the following;:

Lemma eq_nat:(n,m:nat)n=m\/~“n=m.
Proof.
Induction n.
Intro;Case m;[Left;Auto|Right;Auto].
Intros;Case m; [Right;Auto|Intros].
Case (H n1);[Intro;Left;Auto|Intro;Right;Auto].
Save.

Briefly, we can describe the instructions involved: Intro[s] introduces prod-
ucts in the local context (hypotheses), Induction applies induction schemes,
Case makes reasoning by case, Left/Right applies the first/second constructor
of an inductive type with two constructors and Auto is a resolution tactic which
mainly tries to apply lemmas of a data base.

2.2 Declarative style

For the declarative proof, we used Mizar [10], which seems to be very representa-
tive of this proving style®. The proof is partially described in the following script
(the complete proof is a little too long, so we have only detailed the basis case
of the first induction):

3 Indeed, the Mizar project developed a very impressive library essentially in mathe-
matics. So, we can easily consider the stability of this language with respect to its
very widespread use.

theorem
eq_nat: n = m or not (n = m)

proof
Al: for m holds O = m or not (0 = m)
proof
A2: 0 = 0 or not (0 = 0)
proof
A3: 0 = 03
hence thesis by A3;
end;
A4: (0 = mO or not (0 = m0)) implies
(0 =m0 +1 or not (0 =m0 + 1))
proof

assume 0 = m0 or not (0 = m0);
A5: not (0 =m0 + 1) by NAT_1:21;
hence thesis by A5;
end;
for k holds 0 = k or not (0 = k) from Ind(A2,A4);
hence thesis;
end;
A6: (for m holds (n0 = m or not (n0 = m))) implies
(for m holds ((n0 + 1) = m or not ((n0 + 1) = m)))

where by/from is used to perform a more or less powerful resolution, hence
thesis, to conclude the current proof (between proof and end) and assume, to
suppose propositions.

2.3 Term refinement

The third solution to solve the previous proposition is to give the proof term
more or less directly. This can be done in a very easy and practical way by the
prover Alfa [1], which is a huge graphic interface to Agda (successor of ALF).
Figure 1 shows a part of the proof term which has been built gradually (fill-
ing placeholders). As for the Mizar proof, the complete proof is a bit too large,
S0, in the same way, we have only printed the basis case of the first induction.
The rest is behind the "..." managed by Alfa itself, which allows parts of proofs
to be hidden. Even if the explicit pretty-print allows well-known constructions
(A-abstractions, universal quantifiers, ...) to be recognized, some comments can
be made to understand this proof. The universal quantifier V has a special cod-
ing and to be introduced/eliminated, specific constants YI/VE are to be used.
VI1/VI2 allow the side of a V-proposition to be chosen. Finally, natrec is the
recursor (proof term) of the induction scheme on natural numbers, eqZero is the
proof that 0 == 0 and nat_ discr! is the lemma Va € Nat.—(0 == a + 1).

2.4 Comparison

The procedural script in Coq shows that it is quite difficult to read procedural
proofs. The user quickly becomes lost and does not know what the state of the

Fle [E] | Edit [5] |V|EW El | Options [F] | Utils [5]

import Evamples | Satslogik
import Examples/ Predikatiogtk
import Examples ! Nat

import Examples{ EqNar
natrec (C € Nat — Prop,bc e C'0,
ice{neNat)=Cn—=Clouccn)imeNatjeCm
natrec Cbeic 0= be
natrec Cbeic (n+ 1) =icn (natrec C beicn)
[postulate nat_discrl € ¥a e Nato=(0=={a+1))
[postulate nat_discr?2 e va e Nat.-{{a+1)==0)
[postulate not_eqSuce (a,b € Nat,negh e = {a==ble = ({a+1)=={b + 1]}
eq nat.dec € Va e Nat.Wa' e Nat.a==a’ v ala==qa)
eg nat dec=Y1 |ha = [¥a' € Nat.a==a’ v - (e ==a’}]
natrec
(hhosvVa e Nath==a v-(h==0a))
vl [ha' — natrec
[ah—=0==hv-{0==h])
(w1l eqZera)
[An h — vI2 (VE nat_discrd })

o
(hnh—vl.)
[+

Import Examples/Satslogik ‘

Fig. 1. Proof of the decidability of equality on natural numbers in Alfa.

proof is. Without the processing of Coq, the user cannot understand the proof
and this is enforced by, for example, the apparition of free variables (as H or n1
here) which are only bound during the checking of the proof. So, that kind of
script cannot be written in a batch way but only and very easily in interaction
with Coq. Thus, procedural proofs are rather backward-oriented because there
is not much information provided by user’s instructions and everything depends
on the current goal to be proved. As concerns maintainability, obviously, we
can imagine that these scripts are quite sensitive to system changes (naming
conventions for example).

The Mizar script shows a very readable and so understandable proof. The
declarations of auxiliary states allows the user to know what is proved and how
to conclude. The proof can be written in batch mode and an interactive loop
is not required at all to build this kind of proof. Indeed, the state of the proof
may be far from the initial goal to be proved and we know how to prove it only
at the end when we know how to make the link between this initial goal and
the auxiliary lemmas we have proved to succeed, so that, declarative scripts are
rather forward-oriented. A direct inconvenience of this good readability is that
it is rather verbose and the user may well find it tedious to repeat many proposi-
tions (even with copy-paste). These many (forced) repetitions make declarative
scripts fragile with respect to specification changes (permutations of arguments

in a definition, for example) and we cannot imagine specific edition tools which
could deal with every kind of change.

The proof in Alfa is rather readable. Of course, it requires a little practice
to read terms as proofs but it is quite full of information especially when you
reveal type annotations. In the same way, it is easy to write such scripts*, both
in an interactive proof loop as well as in batch mode, because, when building
terms, we can ignore type annotations, which are filled by the proof system with
respect to the goal. Thus, that kind of style is completely backward-oriented.
Regarding robustness, system changes does not interfere because we do not give
instructions to build a proof term but a proof term directly. But, as declarative
scripts, specification changes may involve many changes in the term even without
type signatures.

Following on the previous observations, we can easily tell where these styles
are useful and also when it is interesting to use them. We will use procedu-
ral proofs for small proofs, known to be trivial and realized interactively in a
backward mode, for which, we are not interested in the formal details. These
proofs must be seen as black boxes. Declarative style will be used for more com-
plex proofs we want to build more in a forward style (as in a natural proof in
mathematics), rather in a batch way and very precisely®, i.e. with much infor-
mation for the reader. Finally, proof terms will be also for complex proofs, but
backward-oriented, built either interactively or in batch mode (this is adapted
for both methods), and for which we can choose the level of detail (put all type
signatures, some of them or none). Thus, we can notice that the three styles
correspond to specific needs and it could be a good idea to amalgamate them to
benefit from their advantages in every kind of proof.

3 Presentation of L4

As said previously, L,q4: was developed in the context of the Coq proof system
and there are several reasons for that choice. First, in this theorem prover, the
procedural part comes for free because the proof language is purely procedural.
But, the main reason is certainly that Coq uses the Curry-Howard isomorphism
to code proofs into terms and the adaptation to make Coq accept terms as
proofs will be rather easy®. Only declarative features are not quite natural for
insertion in Coq but we will see how they can be simulated on a procedural proof

4 We do not consider here the useful graphical interface which allows placeholders to
be filled very easily (especially for beginners).

5 However, this depends on the level of automation (that we do not want to consider
here). Too great, an automation can strictly break readability even if we ask decision
procedures to give details of the proofs they built because automated proofs are not
really minimal and thus as clear as "human"-built proofs.

5 We can already give complete terms (Exact tactic) or partial terms (|E|Apply, Refine
tactics) to prove lemmas, but no means is provided to build these terms gradually
or to have a total control on the placeholders we want to fill, so most of these tactics
are only used internally.

machine. Although the choice for suitable systems might seem rather restricted
(procedural systems based on Curry-Howard’s isomorphism), such an extension
could be also possible and quite appropriate for systems like Lego or Nuprl.

3.1 Definition

The syntax of L4 is shown in figure 2, presented in a BNF-like style and where
<proof> is the start entry. <ident> and <int> are respectively the entries for
identifiers and integers. <tac> includes all the current tactic language of Coq.
Here, we have deliberately simplified the <term> entry. In particular, the Cases
construction has been reduced compared to the real version and the Fix/CoFix
forms has been removed (we will not use them directly in our examples and we
will consider recursors just as constants in the way of Martin-Lof’s type theory).

3.2 Semantics

As said previously, one of the major novelties of this work is to try to give a
formal semantics to a proof language, here L,4:, not only for proof terms as
for ALF in [7], but also for procedural and declarative parts. We chose to build
a natural semantics (big steps), which is very concrete and so very close to a
possible implementation. This semantics is correct in the context of the Calculus
of Inductive Constructions (CIC) but without universes and to deal with the
complete theory with universes, we only have to verify the universes constraints
at the end with a specific procedure we did not formalize (this allows us to skip
universe constraints from the evaluation rules and to keep light rules which are
easier to read). Thus, in this context, to give a value to a proof script will consist
in giving a term whose type is convertible to the lemma to be proved.

Preliminaries In figure 2, we call proof script or simply script, every expression
of the <proof> entry. A sentence is an expression of the <proof-sen> entry. We
call term, every expression of the <term> entry and pure term, every expression
of the <term> entry, the <proc> and <decl> entries excluded. We call procedural
part, every expression of the <proc> entry and declarative part, every expression
of the <decl> entry. Finally, a tactic is an expression of the <tac> entry.

A local environment or context is an ordered list of hypotheses. An hypothesis
is of the form (z : T'), where x is an identifier and T, a pure term called type
of x. A global environment is an ordered list of hypotheses and definitions. A
definition may be inductive or not. A non-inductive definition is of the form
c:=1t : T, where ¢ is an identifier called constant, ¢, a pure term called body
of ¢ and T, a pure term called type of ¢ or ¢t. An inductive definition is of the
form Ind[I',](I'q := I'c), where I'p, I'q and I, are contexts corresponding to the
parameters, the defined inductive types and the constructors. A goal is made of
a global environment A, a local environment I' and a pure term T' (type).

<proof> n= (<proof-sen>)*t
<proof-sen> = <proof-top>.

<proof-top> = Let [[?<int>]] <ident> : <term>
| Let <let-clauses>
| 7<int> [: <term>]:= <term>
| Proof
| Qed | Save
<let-clauses> == [[?<int>]] <ident> [: <term>] := <term>
(And [[7<int>]1] <ident> [: <term>] := <term>)*

<term> = [<binders>1<term>

<term> -> <term>

(<ident>(, <ident>)* : <term>)<term>
((<term>)*)

[<<term>>] Cases <term> of (<rules>)* end
Set | Prop | Type

<ident>

? | ?<int>

<proc>

<decl>
<binders> = <ident> (,<ident>)* [: <term>](; <binders>)*
<rules> =[] <pattern> => <term> (| <pattern> => <term>)*
<pattern> = <ident> | ((<ident>)™")
<proc> n= <by <tac>>
<tac> == Intro | Induction <ident> | ...
<decl> = Let <let-clauses> In <term>

Fig. 2. Syntax of Ly4;.

<term-eval> = [<binders>]<term-eval>

<term-eval> -> <term-eval>

(<ident>(, <ident>)* : <term-eval>) <term-eval>
((<term-eval>)")

[<<term-eval>>] Cases <term-eval> of (<rules>)* end
Set | Prop | Type

<ident>

Picint> | 7<int>

Fig. 3. Evaluated terms.

The evaluated terms are defined by the <term-eval> entry of figure 3. The
set of evaluated terms is noted T¢. We call implicit argument, every term of the
form 7, or every evaluated term of the form ?;,,, where n is an integer. The set of
evaluated terms which are implicit arguments is noted Zg. We call metavariable,
every term or every evaluated term of the form ?n, where n is an integer. Finally,
every term or every evaluated term of the form Set, Prop or Type is a sort and
the sort set is noted S.

Term semantics This consists in typechecking incomplete” terms of CIC (pure
terms) and interpreting some other parts (procedural or declarative parts) which
give indications regarding the way the corresponding pure term has to be built.
Procedural and declarative parts which are in the context of a term are replaced
by metavariables and instantiations (of those metavariables) where they occur
at the root.

The values are:

— either (t, A[" IF T],m, o), where t € Tg, A[I' I T] is a goal, m is a set of
couples metavariable numbers-goals (i, A[I; It T};]), o is a substitution from
Te to Te, s.t. A4, 75 € A[l I T] and 75 € A[T; IF T}],

— or Error.

The set of those values is noted V.

Thus, a value is given by a proof term ¢, the type of this proof term A[I" I T,
a set of metavariables (bound to their types) m occurring in ¢ and an instantia-
tion of some implicit arguments (coming from the typechecking of t) o. Moreover,
there are two restrictions: there is no metavariable in the type of t (A[I" I+ T7),
as well as in the types of the metavariables (in m).

Two modes of evaluation are possible if we have the type of the term or not:
the verification mode and the inference mode. Initially, we have the type of the
term (coming from the goal) and we use the verification mode, but some terms
(like applications) can only be evaluated in the inference mode.

7 Indeed, pure terms may contain some metavariables.

Due to lack of space here, we will not be able to give all the evaluation rules
(with the corresponding error rules) of the several semantics. The reader can
refer to [4]® for a complete description (figures 5.3-5.16, pages 57-73) and we
will just give some examples of rules. In particular, we will not consider the error
rules, which can be also found in [4] (appendix A).

Pure terms A pure term t is evaluated, in the inference mode (resp. in the
verification mode), into v, with v € V7, in the undefined goal A[I'] (resp. in the
goal A[I' I+ T7), iff (¢, A[I']) > v (resp. (¢, A[I" IF T) > v) holds.

As an example of rule (to derive the relation »), the evaluation of a
A-abstraction @ la Curry in an undefined goal is the following:

(&, AL, (z :7in)]) > (1, AL, (2 2 Th) IF Ta],m, 0)

x & A[I'l new_impl(n)
([7, A[T]) > ([: T1]ts, A1 IF (x : T1) T3], m, 0)

()\UCurry)

where new__impl(n) ensures that the integer n numbering an implicit argument
is unique.

This rule consists in giving a number (n) to the implicit argument corre-
sponding to the type of z, verifying that z is not already in the (global and
local) environments and typechecking t.

Declarative parts We extend the relation > to deal with the declarative parts:
a pure term or a declarative part ¢ is evaluated, in the inference mode (resp. in
the verification mode), into v, with v € V7, in the undefined goal A[I'] (resp. in
the goal A[I" Ik T7Y), iff (¢, A[L']) >v (resp. (¢, A[I" IF T]) >v) holds.

For instance, a Let ... In in an undefined goal is evaluated as follows:

(Th, AT > (T, A1 IF s],my1,01) s€S
(tl,A[Fl IF TQ]) > (t3,”‘ [Fz IF T3],m2,02)
(tz,A[Fz, (ZU : T3)]) > (t4, A[F3, (.73 : T4) “‘ T5],m3,a3)
(Let T : T1 =1 In tz,A[F]) >
(([SL’ : T4]t4 t303), A[Fg I+ T5[.Z'\t3(73]], (m102 U m2)0'3 @] m3,010203)

(ULetln)

In this rule, first, the type of the binding (T3) is typechecked, next, the body of
the binding (¢1) is typechecked with the previous type where some instantiations
(of implicit arguments) may have been performed (7:) and, finally, the body of
the Let ... In is typechecked adding z as well as the new type of x (T3) in the
local context. We can notice that this rule is sequential (the rule must be read
from the top to the bottom) and instead of allowing parallel evaluations, which
would require a specific mechanism to merge the several constraints, we chose
to impose an evaluation order giving the constraints from an evaluation to the
next one.

8 A version of this document can be found at:
http://logical.inria.fr/~“delahaye/these-delahaye.ps.

Procedural parts Finally, to deal with all the terms, we have to include the
procedural parts in the relation >. To do so, we have to define the evaluation of
tactics. This evaluation can be done only in verification mode because most of
tactics do not provide a pure term as proof but a method to build a pure term
from goals which they are applied to.

A tactic t is evaluated into v, with v € V7, in the goal A[I" I+ T], which is
noted (¢, A[I" Ik T])pw, iff (¢, A[I" IF T])pv holds.

For example, the Cut tactic, which is used to make a cut of a term, is evalu-
ated by means of the following rule:

(T, A[L)) > (T3, A1 & 8],0,01) s€S
new_meta(ng,na)

Cut
(Cat To, AT F oo (P 7o), AT F Toorl, UV
{(nl,A[Fl - (.’L’ H T3)T20’1]), (nQ,A[Fl - T3])},01)
where new_ meta(ni,ns,...,n,) ensures that the integers nq,ns,...,ny, num-

bering some metavariables, are unique.

As this rule generates a cut, that is to say an application in the proof term,
this produces two subgoals, bound to metavariables ?n; and 7ns, and the corre-
sponding proof term is (?n; ?ny). Once the term to be cut (77) evaluated (into
T3), the first goal (bound to ?n;), which corresponds to the head function, is
a product type ((z : T3)T»01) and the second subgoal (bound ot ?ns), which
corresponds to the argument, is the result of the previous evaluation (T3).

Now, using the relation »?, we can give the complete evaluation of the terms,
including the procedural parts: a term ¢ is evaluated, in the inference mode (resp.
in the verification mode), into v, with v € V7, in the undefined goal A[I'] (resp.
in the goal A[I" IF T), iff (¢, A[I']) > v (resp. (¢, A[I" IF T]) >wv) holds.

Sentence semantics A sentence allows us to instantiate a metavariable or to
add a lemma in the context of a metavariable. The values are the following:

— (¢, A" I+ T],m,p,d), where t is a pure term, A[I" I+ T] is a goal, m is a
set of couples metavariable numbers-goals (i, A[I'; IF T;]), p is a stack of
values (|| is the empty stack and < is the concatenation operator), d € D
with D = {Lemma;Let;;Lemmay;Let;p}, s.t. Aj, 75 € A’ IF T] and
?j € A[l; IF T3,

— Error

The set of those values is noted Vp and a value will be also called a state.
Here, as for the term semantics, a value is given by a proof term ¢, the type
of this proof term (A[I" IF T]) and the set of the metavariables (bound to their
types) m occurring in ¢. A difference is that we do not keep an instantiation
of the implicit arguments and, in particular, this means that all the implicit
arguments involved by a sentence must be solved during the evaluation of this

® The relation b is used by the relation > during the evaluation of a <by ... > expres-
sion (rule By in [4]).

sentence (we cannot use the next sentences to do so). Moreover, in a value, we
have also a stack of values, which will be used to store the current proof session
when opening new proof sessions during the evaluation of Let’s which provide
no proof term. Finally, in the same way, we add a declaration flag, which deals
with the several possible declarations (Lemma or Let). Initially, this flag is set to
Lemma and becomes Lemma; when Proof is evaluated. This is similar for Let
with the flags Let; and Let;;, where we give also a tag (here i) which is the
metavariable corresponding to the upcoming proof of the Let.

A sentence "p." is evaluated into v, with v € Vp, in the state (or value)
(t, AL Ik T),m, p,d), iff (p.,t, A[" Ik T], m,p,d)—» v holds.

As an example, let us consider the evaluation of a Let in the current goal:

d = Lemmay ou d = Let;
n=min{i | (?,b) em} (M, A, FT,))em z&l,
(T, A[LR])) > (T, A1 IF s],0,0) new_meta(k)
(Let = : T,t, A[" Ik T1], m, p,d)»
(71, A[I' IF TR], {(?1, A[I'y I+ T3]},
L(([z : T2]?n ?k), A[L IF Ty]o, (m — {(?n, AT, IF Ty]) }o U
{(n, Al po,(z: To) Ik Thol; (?k, Ay Ik T3])}, po,d) | <po, Lety,)

(LetCur)

In this rule'®, the first line consists only in verifying that we are in the context
of a opened proof (introduced by Lemma or another toplevel Let, and where a
Proof command has been evaluated). Next, we look for the current goal, which
this Let is applied to. Our convention is to choose this goal such that it is bound
to the lowest metavariable number (n). The type of the Let (T') is then evaluated
(into T>) and we generate a new metavariable (?k), which will correspond to the
proof given to the Let (once Qed reached, this metavariable will be replaced by
the actual proof). The result of the evaluation shows that we obtain a new goal
bound to metavariable 71 (this will be also when opening a new proof session
with Lemma). This goal has the context of the current goal (after the evaluation
of T, i.e. I'1) and the evaluated type introduced by the Let (7). The current
proof state is put in the stack. In this state, as expected, the global proof term
is an application (([z : T2]?n ?k)). Here, contrary to the previous tactic Cut, the
type of the cut is introduced automatically (this is an expectable behavior) and
this is why the proof term has a A-abstraction in head position. Finally, the Lety
flag is set to declare that we are in the context of Let bound to metavariable ?k.
To accept other Let instructions or instantiations, a Proof command has to be
processed to transform this flag into the flag Lety 3.

Script semantics Finally, the values of the script semantics are:
— (¢, A[lF T), where ¢ is a pure term, A[lF T is a goal, s.t. Zj, ?j,7;; € t,T.
— Error

10 Here, we use the relation » which is related to the relation —» just adding a dot
(".") at the end of the sentence (rule Sen in [4]).

The set of those values is noted Vs.

As a script must provide a complete proof, a value is a proof term ¢ and the
type of this proof term ((¢, A[lF T])), where there is no metavariable or implicit
argument. The context of the type is empty because we suppose that a script is
a proof of a lemma introduced in the toplevel of the global environment (A) by
the command Lemma. Hence, we call lemma, every goal A[lF T'|, where A[lF T is
a goal introduced by Lemma.

A script "py. pa. ... pn." of the lemma A[lF T is evaluated into v, with
v € Vs, iff (p1. p2- --. Pn-, A[lF T]) 4 v holds.

This evaluation consists mainly in iterating the rules for sentences.

4 Examples

We have implemented Lpq: for the latest versions V7 of Coq. Currently, this
is a prototype which is separate from the official release and all the following
examples have been carried out in this prototype.

4.1 Decidability of the equality on natural numbers

Now, we can go back to the example we introduced to compare the three proving
styles. Using L,q:, the proof could look like the following script:

Lemma eq_nat:(n,m:nat)n=m\/ n=m.

Proof.
Let b_n:(m:nat) (0)=m\/~(0)=m.
Proof.
71 := [m:nat]

<[m:nat] (0)=m\/~ (0)=m>
Cases m of
| 0 => <by Left;Auto>
| (S n) => <by Right;Auto>
end.

Qed.

Let i_n:(n:nat) ((m:nat)n=m\/~n=m)->(m:nat) (S n)=m\/~ (S n)=m.
Proof.
71 := [n:nat;Hrec;m:nat]
<[m:nat] (S n)=m\/~ (S n)=m>
Cases m of
| 0 => <by Right;Auto>
| (S n0) => 72
end.
?2 := <[_:n=n0\/"n=n0] (S n)=(S n0)\/~(S n)=(S n0)>
Cases (Hrec n0) of
| (or_introl _) => <by Left;Auto>
| (or_intror _) => <by Right;Auto>
end.
Qed.
?1 := (nat_ind ([n:nat] (m:nat)n=m\/“n=m) b_n i_n).
Save.

In this proof, we have mixed the three proof worlds. The first induction on n
is done declaratively with two toplevel Let’s for the basis (b_n) and the inductive
(i_n) cases. The two cases are used to perform the induction on n, at the end of
the script, by an instantiation (of 71) with a term using nat_ind, the induction
scheme on natural numbers (the first argument of nat_ind is the predicate to be
proved by induction). The proofs of b_n and i_n are realized by instantiations
with terms and trivial parts are settled by small procedural scripts, which are
clearly identified (using <by ...>). In particular, reasonings by case are dealt
with Cases constructions and the term between <...> is the corresponding
predicate (the first A-abstraction is the type of the term to be destructured and
the rest is the type of the branches, i.e. the type of the Cases). Currently, these
predicates have to be provided (by the user) because all the Cases used in this
script are incomplete (presence of metavariables, even with procedural scripts,
see section 3.2) and the typechecker (due to possible dependences) needs to be
helped to give a type to metavariables.

More precisely, to solve the basis case (b_n), we use directly an instantiation
(of 71). We assume the variable m (with a A-abstraction [...]) and we perform a
reasoning by case (with Cases) on m. If m is equal to 0, then this is trivial and we
can solve it in a procedural way. We choose the left-hand side case with the tactic
Left and we have to prove 0=0, which is solved by the tactic Auto. Otherwise,
if m is of the form (S n), it is quite similar and we choose the right-hand side
case with the tactic Right to prove ~ (S n)=0 with Auto.

For the inductive case (i_n), we use also directly an instantiation (of 71).
We assume the induction hypothesis Hrec (coming from the induction on n) and
we perform another reasoning by case on m. If m is equal to 0, this is trivial and
we solve it procedurally in the same way as in the basis case. Otherwise, if m is
equal to (S n0), this is a bit more complicated and we decide to delay the proof
using a metavariable (72). Next, this metavariable is instantiated performing a
reasoning by case on Hrec applied to n0. The two cases correspond to either
n=n0 or “n=n0 (or_introl/r is the first/second constructor of \/), which are
trivially solved in a procedural way as in the basis case.

As said above, the last part of the script consists in solving the global lemma
using an instantiation (of 71) and performing the induction on n with the induc-
tion scheme nat_ind. This scheme takes three arguments: the predicate to be
proved by induction, the proof of the basis case and the proof of the inductive
case. The two last proofs have been already introduced by two toplevel Let’s
and they are directly used.

4.2 Stamp problem

As another example, let us consider the stamp problem, coming from the PVS
tutorial [3] and asserting that every postage requirement of 8 cents or more can
be met solely with stamps of 3 and 5 cents. Formally, this means that every
natural number greater or equal to 8 is the sum of some positive multiple of 3
and some positive multiple of 5. This lemma can be expressed and proved (using
Lpat) in the following way:

Lemma L3_plus_b:(n:nat) (EX t:Z|(EX f:Z|‘(inject_nat n)+8=3*t+5+f¢)).
Proof.

Let cb:(EX t:Z|(EX f:Z|‘(inject_nat 0)+8=3%t+5%f¢)).

Proof.

?1 := (choose ‘1¢ (choose ‘1¢ <by Ring>)).
Qed.
Let ci:(n:nat) (EX t:Z| (EX f:Z|‘(inject_nat n)+8=3*t+5*f‘))->
(EX t:Z| (EX f:Z|‘(inject_nat (S n))+8=3%t+5*f¢)).

Proof.
?1 := [n;Hrec] (skolem 72 Hrec).
7?2 := [x;H:(EX f:Z|‘(inject_nat n)+8=3*x+5*f‘)] (skolem ?3 H).
7?3 := [x0;HO:‘(inject_nat n)+8 = 3*x+5*x0°]74.
Let cir:(EX t:Z| (EX f:Z]“3*x+5*x0+1=3%t+5*f¢)).
Proof.
71 = <[_:7?1(EX t:Z|(EX f:Z|‘3%x+5*x0+1=3%t+5*f¢))>
Cases (dec_eq ‘x0°¢ ‘0¢) of
| (or_introl H) => 72
| (or_intror _) => 73
end.
7?2 := (choose ‘x-3° (choose ‘2¢ <by Rewrite H;Ring>)).

7?3 := (choose ‘x+2¢ (choose ‘x0-1¢ <by Ring>)).
Qed.
7?4 := <by Rewrite inj_S;Rewrite Zplus_S_n;Unfold Zs;Rewrite HO;
Exact cir>.
Qed.
?1 := (nat_ind ([n:nat]?) cb ci).
Save.

where Z is the type of integers, EX is the existential quantifier, inject_nat
is the injection from nat to Z (this injection is needed because we have set this
equality over Z in order to be able to use the decision procedure for Abelian
rings, i.e. the tactic Ring), choose is syntactical sugar!! for (ex_intro 7 ?)
(ex_intro is the single constructor of EX), skolem is syntactical sugar for
(ex_ind ? 7 ?) (ex_ind is the induction scheme of EX) and (dec_eq z; x2) is
equivalent to z1=r5\/"T1=1>.

This proof is done by induction (on n). The basis case is declared with the
name cb, as well as the inductive case with the name ci. For cb, this is triv-
ial, the instantiations are 1 and 1 (given by the term choose), since we have
0+8=3#*1+5*1 (which is solved by the tactic Ring). For the inductive case, in
the first instantiation (of ?71), we introduce the induction hypothesis (Hrec),
which is skolemized (with skolem). Then, in the second instantiation (of ?2),
we give a name for the skolem symbol (x) and we introduce the corresponding
skolemized hypothesis (H), which is skolemized again. In the third instantiation
(of 73), in the same way, we give another skolem name (x0) and we introduce
the skolemized hypothesis (H0). At that point, we can notice that the conclusion
can be transformed (in particular, moving the successor S outside inject_nat)
in order to obtain the left-hand side member of the skolemized hypothesis as a

1 This is done by means of toplevel syntactic definitions (see [9] for more details).

subterm. So, we carry out a cut (cir) of the conclusion after this trivial step
(which require mainly rewritings). This auxiliary lemma is proved by case anal-
ysis (Cases term) according to the fact that x0=0 or not. If x0=0 (this is the first
case, bound to metavariable 72), the instantiations are x-3 and 2, then Ring
solves the goal. Otherwise (this is the second case, bound to metavariable 73),
the instantiations are x+2 and x0-1, then the equality is directly solved by Ring
again. Once cir proved, we can perform, in a procedural way, the rewriting steps
in the conclusion (we do not detail all the tactics and lemmas involved, which
may require an advanced knowledge of Coq, and the reader only has to know
what transformation is carried out by this procuderal part) to obtain the type
of cir and to be able to conclude with the direct use of cir (with the tactic
Exact). Finally, the induction over n is done using the term nat_ind directly
with the corresponding proofs cb and ci as arguments.

Regarding proof style, we can notice that rewriting is, a priori, compatible
with L£p4:. The user only has to make a cut of the expression where the rewritings
have been done and this cut is then directly used in the procedural part, which
carries out the rewritings. This method allows us to use rewriting in a procedural
way and in the middle of a proof. This seems to be a good method if rewriting is
not heavily used. Otherwise, for example, for proofs which are built exclusively
using rewritings (lemmas proved over axiomatizations), this could be a bit rigid
and an interesting extension of L,4: could consist in providing an appropriate
syntax for equational reasoning.

5 Conclusion

5.1 Summary
In this paper, several points have been achieved:

— We have compared three proof styles, namely, the declarative, the procedu-
ral and the term style. This has been done by means of three well-known
theorem provers, which are respectively, Coq, Mizar and Alfa. It has appeared
that these three styles do not deserve to be opposed but were dedicated to
specific kinds of proofs. A merging could allow the user greater freedom in
the presentation of his/her proofs.

— In this view, a uniting language, called £,4;, has been designed in the context
of the Coq proof system. In particular, the declarative features are available
by means of Let ... In’s and toplevel Let’s. The procedural parts are directly
inherited from the tactic language of Coq. Finally, the term language uses the
intuitionistic Curry-Howard isomorphism in the context of Coq and is based
on a language of incomplete proof terms (i.e. with metavariables), which can
be refined by some instantiations.

— As a major originality of L,4, a formal semantics has been given. This
semantics consists essentially in building a proof term (always using Curry-
Howard’s isomorphism) corresponding to a given script. Here, the novelty
has been to give also such a semantics for declarative and procedural parts.

— An implementation for versions V7 of Coq has been also realized. Some
examples have been described and can be already evaluated in this prototype.
In particular, those examples have shown that these three kinds of languages
could naturally coexist in the same proof.

5.2 Extensions and future work
Some evolutions or improvements for £, can be expected:

— As seen in the example of the stamp problem (subsection 4.2), £,4; could
be more appropriate to build easily proofs by rewritings. Such proofs can be
made in Lp4¢, but this must be rather sporadic and especially trivial enough
in such a way that the corresponding cut can be easily related to the initial
goal. Thus, another method remains to be found to deal with proofs which
use equational reasoning heavily. An idea could be to add a feature, which
allows us to iterate some equalities, as e.g., in the Mizar-mode for HOL.

— Lpqt provides various Let’s, which add declarative features to the language
(especially the toplevel Let’s). However, the way the lemmas introduced by
some Let’s are combined to prove some other more complex lemmas can
be improved in order to get a more declarative behavior. Indeed, as can be
seen in the examples we have described (section 4), the auxiliary lemmas,
which are declared by some Let’s, are simply and directly used. No specific
automation is used to combine them and to solve. It would be interesting
to add some automations here, because this is also a significative feature
of declarative systems'2. A first step, almost for free, could consist in using
naturally the tactic Auto and adding systematically the lemmas declared by
some Let’s in the database of this tactic. A more ambitious step would be
to make Auto perform automatically some inductions.

5.3 Generalization and discussion

To conclude, we can wonder how such a proof language could be generalized
to other logical frameworks and, in particular, how it could be applied to other
proof systems. As can be seen, in £,4;, the term part has been clearly emphasized
and, in a way, Curry-Howard’s isomorphism is brought to light. Indeed, here,
A-terms are not only seen as a way of coding (or programming) proofs and giving
a computational behavior to proofs, but also as a way of expressing proofs. So,
Lpq can be applied, almost for free, to other systems based on the (intuitionistic)
Curry-Howard isomorphism, such as Lego or Nuprl. We can also include Alfa,
although Alfa does not provide any tactic language yet (to add such a language
to Alfa would certainly be a significative work, but more from a practical point of
view than for theoretical reasons). Next, if we want to deal with other systems,

2 For instance, ACL2 (successor of Nqthm) provides a huge automation and even Mizar,
which is less automated, has a non trivial deduction system, which is hidden behind
the keyword by.

the problem becomes a bit more difficult due to the term part. First, a good idea
would be to consider only procedural systems (as said previously, to provide a
full tactic language is a quite significative and tedious task), such as PVS or HOL.
As those systems are generally based on classical logic, this means we have to
consider a classical Curry-Howard isomorphism and we have to design another
term language using some AC-calculi or Ay-calculi. Such an extension could be
very interesting because as far as the author knows, no classical proof system
based on such A-calculi has been ever designed. Finally, if we deal with pure
declarative systems, like Mizar or ACL2, the task is quite harder because we have
to build the term part, as well as the procedural part (but again, this must be
considered as a problem in practice and not from a theoretical point of view).

References

1. Thierry Coquand, Catarina Coquand, Thomas Hallgren, and Aarne Ranta. The
Alfa Home Page, 2001.
http://www.md.chalmers.se/~hallgren/Alfa/.

2. Yann Coscoy. A Natural Language Explanation for Formal Proofs. In C. Retoré,
editor, Proceedings of Int. Conf. on Logical Aspects of Computational Linguistics
(LACL), Nancy, volume 1328. Springer-Verlag LNCS/LNAI, September 1996.

3. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam Sri-
vas. A Tutorial Introduction to PVS. In Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida, April 1995.

4. David Delahaye. Conception de langages pour décrire les preuves et les automati-
sations dans les outils d’aide a la preuve: une étude dans le cadre du systéme Coq.
PhD thesis, Université Pierre et Marie Curie (Paris 6), Décembre 2001.

5. John Harrison. Proof Style. In Eduardo Giménez and Christine Paulin-Mohring,
editors, Types for Proofs and Programs: International Workshop TYPES’96, vol-
ume 1512 of LNCS, pages 154-172, Aussois, France, 1996. Springer-Verlag.

6. John Harrison. A Mizar Mode for HOL. In J. von Wright, J. Grundy, and J.
Harrison, editors, Theorem Proving in Higher Order Logics: TPHOLs ’96, volume
1125 of LNCS, pages 203-220, 1996.

7. Lena Magnusson. The Implementation of ALF—a Proof Editor Based on Martin-
Léf’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, Chalmers
University of Technology, 1994.

8. Don Syme. Declarative Theorem Proving for Operational Semantics. PhD thesis,
University of Cambridge, 1998.

9. The Coq Development Team. The Coq Proof Assistant Reference Manual Ver-
sion 7.3. INRIA-Rocquencourt, May 2002.
http://coq.inria.fr/doc-eng.html.

10. Andrzej Trybulec. The Mizar-QC/6000 logic information language. In ALLC Bul-
letin (Association for Literary and Linguistic Computing), volume 6, pages 136—
140, 1978.

11. Markus Wenzel. Isar - A Generic Interpretative Approach to Readable Formal
Proof Documents. In Yves Bertot, Gilles Dowek, André Hirschowitz, Christine
Paulin-Mohring, and Laurent Théry, editors, Theorem Proving in Higher Order
Logics: TPHOLs °99, volume 1690 of LNCS, pages 167-184. Springer-Verlag, 1999.

12. Vincent Zammit. On the Readability of Machine Checkable Formal Proofs. PhD
thesis, University of Kent, Canterbury, October 1998.

